$type=ticker$count=10$cols=4$cate=0

Klasifikasi Pohon Keputusan untuk Kajian Perubahan Penggunaan Lahan Kota Semarang [Paper]

Abstract ABSTRAK Kota Semarang masih berkembang pesat. Dengan jumlah penduduk sekitar 1.434.025 jiwa (BPS, 2006) yang tinggal di kota,...



Abstract

ABSTRAK Kota Semarang masih berkembang pesat. Dengan jumlah penduduk sekitar 1.434.025 jiwa (BPS, 2006) yang tinggal di kota, kota ini bisa disebut kota metropolitan. Pertumbuhan penduduk Kota Semarang sejak tahun 1994 ketika ekspansi ke 16 daerah kabupaten menunjukkan perbaikan. Kondisi ini menyebabkan kebutuhan lahan yang lebih tinggi, sehingga konversi lahan pertanian menjadi nonpertanian akan meningkat. Untuk yang terakhir, data dari jarak jauh-merasakan memainkan peran penting yang memberikan informasi terbaru untuk penggunaan lahan. Hal ini harus didukung oleh canggih metodologi pengolahan gambar seperti otomatis klasifikasi spektral. Penelitian ini mencoba untuk membandingkan dua algoritma klasifikasi Landsat TM digital / ETM + adalah classifier kemungkinan dan keputusan pohon maksimum, akurasi tertinggi berikutnya digunakan untuk studi perubahan penggunaan lahan di Kota Semarang. Penggunaan lahan klasifikasi yang diterapkan memiliki berbeda dua-tahap detail untuk skala 1: 250.000 (tingkat I) dan 1: 100.000 (level II). Hasil ini pada penelitian ini menunjukkan bahwa penggunaan lahan peta klasifikasi pohon keputusan pada akurasi keseluruhan dan Kappa Indeks lebih tinggi dari penggunaan lahan peta hasil maximun klasifikasi kemungkinan dan penggunaan lahan klasifikasi tingkat I memiliki akurasi yang lebih baik daripada penggunaan lahan klasifikasi tingkat II. Akurasi tingkat I klasifikasi di peta tahun 1994, untuk klasifikasi kemungkinan maksimum yang diperoleh adalah 54,14% yang memiliki indeks Kappa adalah 0,4822, dan akurasi untuk klasifikasi pohon keputusan adalah 66,34% dengan indeks Kappa 0,6256. Akurasi peta tahun 2002 untuk klasifikasi kemungkinan maksimum yang diperoleh adalah 75,12% yang memiliki indeks Kappa 0713, dan keputusan klasifikasi pohon akurasi 81,46% yang memiliki indeks Kappa 0787. Pada peta tahun 2006 untuk klasifikasi kemungkinan maksimum yang diperoleh adalah akurasi keseluruhan 78,05% yang memiliki indeks Kappa 0,7641 dan keputusan klasifikasi pohon akurasi 82,45% yang memiliki indeks Kappa 0805. Perubahan penggunaan lahan di Kota Semarang menginstruksikan turunnya perkebunan dan lahan pertanian dan meningkatnya penyelesaian dan industri.

Kata Kunci: keputusan klasifikasi pohon; klasifikasi kemungkinan maksimum; penggunaan lahan; perubahan penggunaan lahan;


ABSTRACT The  Semarang  City  is  still  growing  rapidly.   With  total  population  of approximately 1,434,025 people (BPS, 2006) who lived in the city, this city can be called a metropolitan city. Growth of Semarang City population since 1994  when expansion into 16 district areas showed improvement. This condition caused the need of  land higher, so that the conversion of agricultural into nonagricultural land will increased. For the latter, remotely-sensed data plays an important role which provide updated information for land use. This is must be supported by the advanced of image processing methodology such as automated   spectral  classification. This study attempted to compare two classification algorithm of digital Landsat TM/ETM+ is the maximum likelihood and decision tree classifier, the next highest accuracy used for the study of land use change in the Semarang City. Land use classification which was applied has different two-stage of the detail for scale of 1 : 250.000 (level I)  and 1 : 100.000 (level II). This  result  on  this  study indicate  that  the  landuse  map  of  decision  tree classification  on overall accuracy and Kappa Index was higher than landuse map of result maximun likelihood classification and land use classification of level I   have accuration which better than land use classification of level II. The accuracy of level  I classification at map year 1994, for maximum likelihood classification obtained is 54,14%  that  have  Kappa  index  is  0,4822,  and  the  accuracy  for  decision  tree classification is 66,34% with Kappa index 0,6256. The accuracy of map year 2002 for maximum likelihood classification obtained is 75,12% that have Kappa index 0,713, and for decision tree classification accuration of 81,46% that have Kappa index 0,787. At map year 2006 for maximum likelihood classification obtained  is overall accuration of 78,05% that have Kappa index 0,7641 and for decision tree classification accuration of 82,45% that have Kappa index 0,805. Change of land use in Semarang City instruct the  descent  of  plantation  and  agricultural  land and increasing  of  settlement  and industrial.


Keywords: decision tree classification; maximum likelihood classification; land use; land use change

DOWNLOAD PAPER

COMMENTS

Nama

Data,55,Geospasial,118,GIS,81,Pustaka,20,RS,67,Software,31,Tutorial,66,
ltr
item
RSGIS INDONESIA: Klasifikasi Pohon Keputusan untuk Kajian Perubahan Penggunaan Lahan Kota Semarang [Paper]
Klasifikasi Pohon Keputusan untuk Kajian Perubahan Penggunaan Lahan Kota Semarang [Paper]
https://1.bp.blogspot.com/-OiKbXOZMcPU/XMliUUFRGzI/AAAAAAAABs0/AWmHbLYRDes1mAkOhAUPNLZrbKDiYmBZwCLcBGAs/s640/Untitled.jpg1.jpg
https://1.bp.blogspot.com/-OiKbXOZMcPU/XMliUUFRGzI/AAAAAAAABs0/AWmHbLYRDes1mAkOhAUPNLZrbKDiYmBZwCLcBGAs/s72-c/Untitled.jpg1.jpg
RSGIS INDONESIA
https://www.rsgis.info/2019/05/klasifikasi-pohon-keputusan-untuk-kajian-perubahan-pengunaan-lahan-kota-semarang.html
https://www.rsgis.info/
https://www.rsgis.info/
https://www.rsgis.info/2019/05/klasifikasi-pohon-keputusan-untuk-kajian-perubahan-pengunaan-lahan-kota-semarang.html
true
3008467515520484700
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share. STEP 2: Click the link you shared to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy