$type=ticker$count=10$cols=4$cate=0

Pemanfaatan Citra Penginderaan Jauh dan SIG untuk Penentuan Indeks Kerentanan Pesisir [PAPER]

ABSTRAK Penelitian indeks kerentanan pesisir di Kabupaten Kebumen dilakukan berdasarkan parameter fisik pesisir. Teknologi Penginderaa...



ABSTRAK

Penelitian indeks kerentanan pesisir di Kabupaten Kebumen dilakukan berdasarkan parameter fisik pesisir. Teknologi Penginderaan Jauh sangat potensial dalam pengamatan dan analisis kawasan pesisir, sebab mampu menampilkan data spasial kondisi pesisir saat ini maupun masa lampau. Tujuan dari penelitian ini adalah (1) mengkaji manfaat dan ketelitian citra penginderaan jauh Landsat dalam ekstraksi variabel penentu indeks kerentanan pesisir, (2) menentukan nilai indeks kerentanan pesisir di Kabupaten Kebumen, dan (3) memetakan distribusi tingkat kerentanan pesisir di Kabupaten Kebumen berdasarkan parameter yang digunakan dengan sistem informasi geografis. Metode yang digunakan dalam penelitian ini berupa pengumpulan data, interpretasi, serta kerja lapangan. Citra Landsat 7 dan 8 OLI dengan resolusi spasial 30 meter digunakan untuk ekstraksi parameter kerentanan berupa geomorfologi dan perubahan garis pantai. Kerja lapangan untuk menguji hasil interpretasi citra Landsat. Data sekunder yang digunakan berupa data peta RBI, peta geologi, rata-rata ketinggian gelombang dan rata-rata rentang pasang surut. Nilai indeks kerentanan didapatkan berdasarkan analisis overlay dan skoring tiap parameter yang dilakukan dengan batuan Sistem Informasi Geografis (SIG). Hasil akhir penelitian ini adalah berupa peta distribusi tingkat kerentanan pesisir berdasarkan parameter fisik pesisir berupa geomorfologi, perubahan garis pantai, elevasi, perubahan kenaikan muka air laut relatif, rata-rata ketinggian gelombang, rata-rata rentang pasang surut, dan geologi. Hasil penelitian menunjukkan akurasi citra landsat untuk identifikasi variabel geomorfologi dan perubahan garis pantai sebesar 90,38% dan 85,71%. Peta indeks kerentanan pesisir yang diperoleh menunjukkan bahwa pesisir Kebumen memiliki kerentanan rendah hingga sangat tinggi. Kerentanan rendah (3,9 -5,5) terdiri dari Kecamatan Ayah dan Buayan. Kerentanan sedang (6,8 - 7,8) meliputi sebagian Kecamatan Ayah. Kerentanan tinggi (9,6 - 11,7) berada di Kecamatan Klirong. Kemudian, kerentanan sangat tinggi (14,3 - 26,1) meliputi Kecamamatan Puring, Petanaham, Klirong, Buluspesantren, Ambal, Mirit dan Ayah.

Kata kunci: Indeks Kerentanan Pesisir, Citra Landsat, Penginderaan Jauh, SIG


ABSTRACT

The research of coastal vulnerability index in Kebumen was conducted based on coastal physical parameters. Remote sensing technology potential in the observation and analysis of coastal areas, because capable to displaying current and past of spatial data coastal conditions. This research aim was to (1) assess the benefits and accuracy of Landsat remote sensing image extraction determinant variables coastal vulnerability index, (2) determining the value of coastal vulnerability index in Kebumen district, (3) mapped the distribution of coastal vulnerability in Kebumen district based on the parameters used by geographic information system. The methods used in this research is data collection, interpretation, and field work. Landsat image 7 ETM+ and 8 OLI with spatial of 30 meters was used for the extraction parameters of vulnerability in the form of geomorphology and shoreline change. Field work to test the results of Landsat imagery interpretation. Secondary data used in the form of data map Indonesia appearance of the earth, geological maps, the average height of the waves, and the average tidal range. Vulnerability index values obtained by overlay analysis and scoring of each parameter were performed with the help of Geographic Information System (GIS). The final result of this research is a map of the distribution of coastal vulnerability by physical parameters such as geomorphology, shoreline change, elevation,mean sea level,average wave height, average tidal range, and geology. The result showed that the accuracy of landsat imagery for identifying the variables of geomorphology and shoreline changes by 90.38% and 85.71%. Map of coastal vulnerability index showed that Kebumen has low until very high vulnerability index. Low vulnerability (3.9 -5.5) which consist of Ayah and Buayan sub district. Medium Vulnerability (6.8 - 7.8) is a part of Ayah. High vulnerability (9.6 - 11.7) is Klirong. Very high vulnerability (14.3 - 26.1) include of Puring, Petanahan, Klirong, Buluspesantren, Ambal, Mirit and Ayah.

Keywords: Coastal Vulnerability Index, Landsat Imagery, Remote Sensing, GIS


DOWNLOAD PAPER

COMMENTS

Nama

Data,56,Geospasial,185,GIS,134,Pustaka,20,RS,134,Software,36,Tutorial,74,
ltr
item
RSGIS INDONESIA: Pemanfaatan Citra Penginderaan Jauh dan SIG untuk Penentuan Indeks Kerentanan Pesisir [PAPER]
Pemanfaatan Citra Penginderaan Jauh dan SIG untuk Penentuan Indeks Kerentanan Pesisir [PAPER]
https://1.bp.blogspot.com/-IcbqfuJt68Q/XYsnrOQs5JI/AAAAAAAACE4/rfjZ9r4puGsLJ5TK9dbSDtv17c7ahI6DQCLcBGAsYHQ/s640/as.jpg
https://1.bp.blogspot.com/-IcbqfuJt68Q/XYsnrOQs5JI/AAAAAAAACE4/rfjZ9r4puGsLJ5TK9dbSDtv17c7ahI6DQCLcBGAsYHQ/s72-c/as.jpg
RSGIS INDONESIA
https://www.rsgis.info/2019/09/pemanfaatan-citra-penginderaan-jauh-dan-sig-untukpenentuan-indeks-kerentanan-pesisir.html
https://www.rsgis.info/
https://www.rsgis.info/
https://www.rsgis.info/2019/09/pemanfaatan-citra-penginderaan-jauh-dan-sig-untukpenentuan-indeks-kerentanan-pesisir.html
true
3008467515520484700
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share. STEP 2: Click the link you shared to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy